Content area

Abstract

Obtaining accurate water level predictions are essential for water resource management and implementing flood mitigation strategies. Several data-driven models can be found in the literature. However, there has been limited research with regard to addressing the challenges posed by large spatio-temporally referenced hydrological datasets, in particular, the challenges of maintaining predictive performance and uncertainty quantification. Gaussian Processes (GPs) are commonly used to capture complex space-time interactions. However, GPs are computationally expensive and suffer from poor scaling as the number of locations increases due to required covariance matrix inversions. To overcome the computational bottleneck, the Nearest Neighbor Gaussian Process (NNGP) introduces a sparse precision matrix providing scalability without having to make inferential compromises. In this work we introduce an innovative model in the hydrology field, specifically designed to handle large datasets consisting of a large number of spatial points across multiple hydrological basins, with daily observations over an extended period. We investigate the application of a Bayesian spatiotemporal NNGP model to a rich dataset of daily water levels of rivers located in Ireland. The dataset comprises a network of 301 stations situated in various basins across Ireland, measured over a period of 90 days. The proposed approach allows for prediction of water levels at future time points, as well as the prediction of water levels at unobserved locations through spatial interpolation, while maintaining the benefits of the Bayesian approach, such as uncertainty propagation and quantification. Our findings demonstrate that the proposed model outperforms competing approaches in terms of accuracy and precision.

Details

1009240
Location
Identifier / keyword
Title
A Scalable Bayesian Spatiotemporal Model for Water Level Predictions using a Nearest Neighbor Gaussian Process Approach
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 9, 2024
Section
Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-11
Milestone dates
2024-12-09 (Submission v1)
Publication history
 
 
   First posting date
11 Dec 2024
ProQuest document ID
3143055428
Document URL
https://www.proquest.com/working-papers/scalable-bayesian-spatiotemporal-model-water/docview/3143055428/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-12
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic