Content area

Abstract

James-Stein (JS) estimators have been described as showing the inadequacy of maximum likelihood estimation when assessed using mean square error (MSE). We claim the problem is not with maximum likelihood (ML) but with MSE. When MSE is replaced with a measure \(\Lambda\) of the information utilized by a statistic, likelihood based methods are superior. The information measure \(\Lambda\) describes not just point estimators but extends to Fisher's view of estimation so that we not only reconsider how estimators are assessed but also how we define an estimator. Fisher information and his views on the role of parameters, interpretation of probability, and logic of statistical inference fit well with \(\Lambda\) as measure of information.

Details

1009240
Identifier / keyword
Title
Rethinking Mean Square Error: Why Information is a Superior Assessment of Estimators
Author
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 11, 2024
Section
Mathematics; Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-12
Milestone dates
2024-12-11 (Submission v1)
Publication history
 
 
   First posting date
12 Dec 2024
ProQuest document ID
3143451714
Document URL
https://www.proquest.com/working-papers/rethinking-mean-square-error-why-information-is/docview/3143451714/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-27
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic