Content area

Abstract

This paper provides a comprehensive review of mechanical equipment fault diagnosis methods, focusing on the advancements brought by Transformer-based models. It details the structure, working principles, and benefits of Transformers, particularly their self-attention mechanism and parallel computation capabilities, which have propelled their widespread application in natural language processing and computer vision. The discussion highlights key Transformer model variants, such as Vision Transformers (ViT) and their extensions, which leverage self-attention to improve accuracy and efficiency in visual tasks. Furthermore, the paper examines the application of Transformer-based approaches in intelligent fault diagnosis for mechanical systems, showcasing their superior ability to extract and recognize patterns from complex sensor data for precise fault identification. Despite these advancements, challenges remain, including the reliance on extensive labeled datasets, significant computational demands, and difficulties in deploying models on resource-limited devices. To address these limitations, the paper proposes future research directions, such as developing lightweight Transformer architectures, integrating multimodal data sources, and enhancing adaptability to diverse operational conditions. These efforts aim to further expand the application of Transformer-based methods in mechanical fault diagnosis, making them more robust, efficient, and suitable for real-world industrial environments.

Details

1009240
Title
A Review of Intelligent Device Fault Diagnosis Technologies Based on Machine Vision
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 11, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-12
Milestone dates
2024-12-11 (Submission v1)
Publication history
 
 
   First posting date
12 Dec 2024
ProQuest document ID
3143451719
Document URL
https://www.proquest.com/working-papers/review-intelligent-device-fault-diagnosis/docview/3143451719/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-13
Database
ProQuest One Academic