Content area

Abstract

Multigrid methods are asymptotically optimal algorithms ideal for large-scale simulations. But, they require making numerous algorithmic choices that significantly influence their efficiency. Unlike recent approaches that learn optimal multigrid components using machine learning techniques, we adopt a complementary strategy here, employing evolutionary algorithms to construct efficient multigrid cycles from available individual components. This technology is applied to finite element simulations of the laser beam welding process. The thermo-elastic behavior is described by a coupled system of time-dependent thermo-elasticity equations, leading to nonlinear and ill-conditioned systems. The nonlinearity is addressed using Newton's method, and iterative solvers are accelerated with an algebraic multigrid (AMG) preconditioner using hypre BoomerAMG interfaced via PETSc. This is applied as a monolithic solver for the coupled equations. To further enhance solver efficiency, flexible AMG cycles are introduced, extending traditional cycle types with level-specific smoothing sequences and non-recursive cycling patterns. These are automatically generated using genetic programming, guided by a context-free grammar containing AMG rules. Numerical experiments demonstrate the potential of these approaches to improve solver performance in large-scale laser beam welding simulations.

Details

1009240
Title
Towards Automated Algebraic Multigrid Preconditioner Design Using Genetic Programming for Large-Scale Laser Beam Welding Simulations
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 11, 2024
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-12
Milestone dates
2024-12-11 (Submission v1)
Publication history
 
 
   First posting date
12 Dec 2024
ProQuest document ID
3143451801
Document URL
https://www.proquest.com/working-papers/towards-automated-algebraic-multigrid/docview/3143451801/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-13
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic