Content area

Abstract

Abstract

The prediction of fire growth is crucial for effective firefighting and rescue operations. Recent advancements in vision-based techniques using RGB vision and infrared (IR) thermal imaging data, coupled with artificial intelligence and deep learning techniques, have shown promising solutions to be applied in the detection of fire and the prediction of its behavior. This study introduces the use of Convolutional Long Short-term Memory (ConvLSTM) network models for predicting room fire growth by analyzing spatiotemporal IR thermal imaging data acquired from full-scale room fire tests. Our findings revealed that SwinLSTM, an enhanced version of ConvLSTM combined with transformers (a deep learning architecture based on a new mechanism called multi-head attention) for computer vision purposes, can be used for the prediction of room fire flashover occurrence. Notably, transformer-based ConvLSTM deep learning models, such as SwinLSTM, demonstrate superior prediction capability, which suggests a new vision-based smart solution for future fire growth prediction tasks. The main focus of this work is to perform a feasibility study on the use of a pure vision-based deep learning model for analysis of future video data to anticipate behavior of fire growth in room fire incidents.

Details

1009240
Business indexing term
Location
Title
Vision-Based Prediction of Flashover Using Transformers and Convolutional Long Short-Term Memory Model
Publication title
Volume
13
Issue
23
First page
4776
Publication year
2024
Publication date
2024
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-12-03
Milestone dates
2024-10-25 (Received); 2024-11-29 (Accepted)
Publication history
 
 
   First posting date
03 Dec 2024
ProQuest document ID
3144081018
Document URL
https://www.proquest.com/scholarly-journals/vision-based-prediction-flashover-using/docview/3144081018/se-2?accountid=208611
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-13
Database
ProQuest One Academic