Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The combustion efficiency of wood pellets is partly affected by their average length. The ISO 17829 standard defines the methodology for assessing the average length of sample pellets, but the method does not always lead to representative data. Furthermore, a standard analysis is time-consuming as it requires manual measurement of the pellets using a caliper. This paper, whilst evaluating the effect of pellet length on combustion efficiency, proposes a pending-patented dimensional image processing method (DIP) for assessing pellet length. DIP allows the dimensional data of grouped and stacked pellets to be obtained by exploiting the shadows produced by pellets when exposed to a light source, assuming that different-sized pellets produce different shadows. Thus, the proposed method allows for the extraction of dimensional information from non-distinct objects, overcoming the reliance of classical image processing methods on object distance for effective segmentation. Combustion tests, carried out using pellets varying only in length, confirmed the influence of length on combustion efficiency. Shorter pellets, compared to longer ones, significantly reduced CO emissions by up to 94% (mg/MJ). However, they exhibited a higher fuel mass consumption rate (kg/h), with an increase of up to 22.8% compared to the longest sample. In addition, longer pellets produced fewer but larger shadows than shorter ones. Further studies are needed to correlate the number and size of shadows with samples’ average length so that DIP could be implemented in stoves and programmed to communicate with the control unit and automatically optimize the setting in order to improve combustion efficiency.

Details

Title
Image Processing Technique for Enhanced Combustion Efficiency of Wood Pellets
Author
Gasperini, Thomas  VIAFID ORCID Logo  ; Pizzi, Andrea  VIAFID ORCID Logo  ; Olivi, Lucia; Toscano, Giuseppe  VIAFID ORCID Logo  ; Ilari, Alessio  VIAFID ORCID Logo  ; Duca, Daniele  VIAFID ORCID Logo 
First page
6144
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144091833
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.