Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Autism spectrum disorder (ASD) is a brain disorder causing issues among many young children. For children suffering from ASD, their learning ability is typically slower when compared to normal children. Therefore, many technologies aiming to teach ASD children with optimized learning approaches have emerged. With this motivation, this study presents a smart autism spectrum disorder learning system based on remote edge healthcare clinics and the Internet of Medical Things, the objective of which is to offer an online education and healthcare environment for autistic children. Concave and convex optimization constraints, such as accuracy, learning score, total processing time with deadline, and resource failure, are considered in the proposed system, with a focus on different autism education learning applications (e.g., speaking, reading, writing, and listening), while respecting the system’s quality of service (QoS) requirements. All of the autism applications are executed on smartwatches, mobile devices, and edge healthcare nodes during their training and analysis in the system. This study presents the smartwatch autism spectrum data learning scheme (SM-ASDS), which consists of different offloading approaches, training analyses, and schemes. The SM-ASDS algorithm methodology includes partitioning offloading and deep convolutional neural network (DCNN)- and adaptive long short-term memory (ALSTM)-based schemes, which are used to train autism-related data on different nodes. The simulation results show that SM-ASDS improved the learning score by 30%, accuracy by 98%, and minimized the total processing time by 33%, when compared to baseline methods. Overall, this study presents an education learning system based on smartwatches for autistic patients, which facilitates educational training for autistic patients based on the use of artificial intelligence techniques.

Details

Title
Smart Autism Spectrum Disorder Learning System Based on Remote Edge Healthcare Clinics and Internet of Medical Things
Author
Mazin Abed Mohammed 1   VIAFID ORCID Logo  ; Alyahya, Saleh 2   VIAFID ORCID Logo  ; Abdulrahman Abbas Mukhlif 1   VIAFID ORCID Logo  ; Karrar Hameed Abdulkareem 3   VIAFID ORCID Logo  ; Hamouda, Hassen 4 ; Abdullah Lakhan 5   VIAFID ORCID Logo 

 College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq; [email protected] 
 Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Onaizah 2053, Saudi Arabia; [email protected] 
 College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq; [email protected] 
 Department of Business Administration, College of Business Administration, Majmaah University, Al-Majmaah 11952, Saudi Arabia 
 Department of Cybersecurity and Computer Science, Dawood University of Engineering and Technology, Karachi City 74800, Pakistan; [email protected] 
First page
7488
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144160343
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.