Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The strong wind environment causes the additional conductor of the overhead contact system (OCS) of the Lanzhou–Xinjiang high-speed railway to gallop, significantly impacting the safe operation of the train. This paper presents the design of an online monitoring system for the galloping of additional conductors in the OCS, utilizing video monitoring for accurate and real-time assessment. Initially, the dynamics of the OCS additional conductor and its operational environment are examined, leading to the selection of suitable data transmission and power supply methods to finalize the camera configuration. Secondly, a preprocessing method for enhancing images of galloping in OCS additional conductors is developed, effectively reducing noise in edge detection through a region chain code clustering analysis. The video monitoring system effectively extracts wire edges, addressing the issues of splitting, breakage, and edge overlap in edge detection, while accurately identifying wire targets in video images. In conclusion, a galloping monitoring test platform is established to extract galloping data from additional conductors through video monitoring. The analysis of the galloping frequency and amplitude facilitates the comprehensive monitoring and assessment of the galloping status of OCS additional conductors. The video monitoring system effectively extracts and analyzes galloping data of the OCS additional conductor, fulfilling the fundamental requirements for the online monitoring of additional conductor galloping, and possesses significant engineering application value.

Details

Title
Research on Video Monitoring Technology for Galloping of OCS Additional Conductors of High-Speed Railway in Strong Wind Zone
Author
Zhang, Wentao 1 ; Wang, Wenhao 2 ; Zhao, Shanpeng 1   VIAFID ORCID Logo  ; Yuan, Huayu 1 ; Zhang, Youpeng 1 ; Yao, Xiaotong 1 ; Chen, Guangwu 1 

 School of Automatic & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; [email protected] (W.Z.); 
 China Energy Engineering Group Gansu Electric Power Design Institute Co., Ltd., Lanzhou 730050, China 
First page
7521
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144169310
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.