Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As maximum power point tracking (MPPT) algorithms have developed towards multi-task intelligent computing, processors in photovoltaic power generation control systems must be capable of achieving a higher performance. However, the challenges posed by the complex environment of photovoltaic fields with regard to processor reliability cannot be overlooked. To address these issues, we proposed a novel approach. Our approach uses error rate and performance as switching metrics and performs joint statistics to achieve efficient adaptive switching. Based on this, our work designed a redundancy-mode switchable three-core processor system to balance performance and reliability. Additionally, by analyzing the relationship between performance and reliability, we proposed optimization methods to improve reliability while ensuring a high performance was maintained. Finally, we designed an error injection method and verified the system’s reliability by analyzing the error rate probability model in different scenarios. The results of the analysis show that compared with the traditional MPPT controller, the redundancy mode switchable multi-core processor system proposed in this paper exhibits a reliability approximately 5.58 times that of a non-fault-tolerant system. Furthermore, leveraging the feature of module switching, the system’s performance has been enhanced by 26% compared to a highly reliable triple modular redundancy systems, significantly improving the system’s reliability while ensuring a good performance is maintained.

Details

Title
Adaptive Switching Redundant-Mode Multi-Core System for Photovoltaic Power Generation
Author
Liu, Liang 1 ; Zhang, Xige 1 ; Zhou, Jiahui 1 ; Niu, Kai 2 ; Guo, Zixuan 2 ; Zhao, Yawen 2 ; Zhang, Meng 2   VIAFID ORCID Logo 

 Smartchip Microelectronics Technology Co., Ltd., Beijing 100000, China; [email protected] (L.L.); [email protected] (X.Z.); [email protected] (J.Z.) 
 School of Computer Science, Northwestern Polytechnical University, Xi’an 710000, China; [email protected] (K.N.); [email protected] (Z.G.); [email protected] (Y.Z.) 
First page
7561
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144170708
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.