Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The working conditions of planetary gearboxes are complex, and their structural couplings are strong, leading to low reliability. Traditional deep neural networks often struggle with feature learning in noisy environments, and their reliance on one-dimensional signals as input fails to capture the interrelationships between data points. To address these challenges, we proposed a fault diagnosis method for planetary gearboxes that integrates Markov transition fields (MTFs) and a residual attention mechanism. The MTF was employed to encode one-dimensional signals into feature maps, which were then fed into a residual networks (ResNet) architecture. To enhance the network’s ability to focus on important features, we embedded the squeeze-and-excitation (SE) channel attention mechanism into the ResNet34 network, creating a SE-ResNet model. This model was trained to effectively extract and classify features. The developed method was validated using a specific dataset and achieved an accuracy of about 98.1%. The results demonstrate the effectiveness and reliability of the developed method in diagnosing faults in planetary gearboxes under strong noise conditions.

Details

Title
Planetary Gearboxes Fault Diagnosis Based on Markov Transition Fields and SE-ResNet
Author
Liu, Yanyan 1 ; Gao, Tongxin 1 ; Wu, Wenxu 2 ; Sun, Yongquan 2 

 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] 
 Institute of Sensor and Reliability Engineering, Harbin University of Science and Technology, Harbin 150080, China; [email protected] 
First page
7540
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144171686
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.