Content area

Abstract

Sparse Matrix-Matrix Multiplication (SpMM) is a fundamental operation in graph computing and analytics. However, the irregularity of real-world graphs poses significant challenges to achieving efficient SpMM operation for graph data on GPUs. Recently, significant advancements in GPU computing power and the introduction of new efficient computing cores within GPUs offer new opportunities for acceleration. In this paper, we present HC-SpMM, a pioneering algorithm that leverages hybrid GPU cores (Tensor cores and CUDA cores) to accelerate SpMM for graphs. To adapt to the computing characteristics of different GPU cores, we investigate the impact of sparse graph features on the performance of different cores, develop a data partitioning technique for the graph adjacency matrix, and devise a novel strategy for intelligently selecting the most efficient cores for processing each submatrix. Additionally, we optimize it by considering memory access and thread utilization, to utilize the computational resources to their fullest potential. To support complex graph computing workloads, we integrate HC-SpMM into the GNN training pipeline. Furthermore, we propose a kernel fusion strategy to enhance data reuse, as well as a cost-effective graph layout reorganization method to mitigate the irregular and sparse issues of real-world graphs, better fitting the computational models of hybrid GPU cores. Extensive experiments on 14 real-world graph datasets demonstrate that HC-SpMM achieves an average speedup of 1.33x and 1.23x over state-of-the-art SpMM kernels and GNN frameworks.

Details

1009240
Title
HC-SpMM: Accelerating Sparse Matrix-Matrix Multiplication for Graphs with Hybrid GPU Cores
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 12, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-13
Milestone dates
2024-12-12 (Submission v1)
Publication history
 
 
   First posting date
13 Dec 2024
ProQuest document ID
3144195756
Document URL
https://www.proquest.com/working-papers/hc-spmm-accelerating-sparse-matrix-multiplication/docview/3144195756/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-14
Database
ProQuest One Academic