Content area

Abstract

With increasing computational demand, Neural-Network (NN) based models are being developed as pre-trained surrogates for different thermohydraulics phenomena. An area where this approach has shown promise is in developing higher-fidelity turbulence closures for computational fluid dynamics (CFD) simulations. The primary bottleneck to the widespread adaptation of these NN-based closures for nuclear-engineering applications is the uncertainties associated with them. The current paper illustrates three commonly used methods that can be used to quantify model uncertainty in NN-based turbulence closures. The NN model used for the current study is trained on data from an algebraic turbulence closure model. The uncertainty quantification (UQ) methods explored are Deep Ensembles, Monte-Carlo Dropout, and Stochastic Variational Inference (SVI). The paper ends with a discussion on the relative performance of the three methods for quantifying epistemic uncertainties of NN-based turbulence closures, and potentially how they could be further extended to quantify out-of-training uncertainties. For accuracy in turbulence modeling, paper finds Deep Ensembles have the best prediction accuracy with an RMSE of \(4.31\cdot10^{-4}\) on the testing inputs followed by Monte-Carlo Dropout and Stochastic Variational Inference. For uncertainty quantification, this paper finds each method produces unique Epistemic uncertainty estimates with Deep Ensembles being overconfident in regions, MC-Dropout being under-confident, and SVI producing principled uncertainty at the cost of function diversity.

Details

1009240
Identifier / keyword
Title
Quantifying Model Uncertainty of Neural Network-based Turbulence Closures
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 11, 2024
Section
Physics (Other)
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-13
Milestone dates
2024-12-11 (Submission v1)
Publication history
 
 
   First posting date
13 Dec 2024
ProQuest document ID
3144197093
Document URL
https://www.proquest.com/working-papers/quantifying-model-uncertainty-neural-network/docview/3144197093/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-14
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic