Content area

Abstract

Finding optimal solutions to combinatorial optimization problems is pivotal in both scientific and technological domains, within academic research and industrial applications. A considerable amount of effort has been invested in the development of accelerated methods that leverage sophisticated models and harness the power of advanced computational hardware. Despite the advancements, a critical challenge persists, the dual demand for both high efficiency and broad generality in solving problems. In this work, we propose a general method, Free-Energy Machine (FEM), based on the ideas of free-energy minimization in statistical physics, combined with automatic differentiation and gradient-based optimization in machine learning. The algorithm is flexible, solving various combinatorial optimization problems using a unified framework, and is efficient, naturally utilizing massive parallel computational devices such as graph processing units (GPUs) and field-programmable gate arrays (FPGAs). We benchmark our algorithm on various problems including the maximum cut problems, balanced minimum cut problems, and maximum \(k\)-satisfiability problems, scaled to millions of variables, across both synthetic, real-world, and competition problem instances. The findings indicate that our algorithm not only exhibits exceptional speed but also surpasses the performance of state-of-the-art algorithms tailored for individual problems. This highlights that the interdisciplinary fusion of statistical physics and machine learning opens the door to delivering cutting-edge methodologies that will have broad implications across various scientific and industrial landscapes.

Details

1009240
Business indexing term
Title
Free-Energy Machine for Combinatorial Optimization
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 12, 2024
Section
Mathematics; Condensed Matter; Physics (Other)
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-13
Milestone dates
2024-12-12 (Submission v1)
Publication history
 
 
   First posting date
13 Dec 2024
ProQuest document ID
3144197737
Document URL
https://www.proquest.com/working-papers/free-energy-machine-combinatorial-optimization/docview/3144197737/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-14
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic