Content area

Abstract

Interactive dynamic simulators are an accelerator for developing novel robotic control algorithms and complex systems involving humans and robots. In user training and synthetic data generation applications, high-fidelity visualizations from the simulation are essential. Yet, robotic simulators often limit their rendering algorithms to preserve real-time interaction with the simulation. Advancements in Graphics Processing Units (GPU) enable improved visualization without compromising performance. However, these advancements cannot be fully leveraged in simulation frameworks that use legacy graphics application programming interfaces (API) to interface with the GPU. This paper presents a performance-focused and lightweight rendering engine supporting the modern Vulkan graphics API that can be easily integrated with other simulation frameworks to enhance visualizations. To illustrate the proposed method, our engine is used to modernize the legacy rendering pipeline of the Asynchronous Multi-Body Framework (AMBF), a dynamic simulation framework used extensively for interactive robotics simulation development. This new rendering engine implements graphical features such as physically based rendering (PBR), anti-aliasing, and ray-traced shadows, significantly improving the image fidelity of AMBF. Computational experiments show that the engine can render a simulated scene with over seven million triangles while maintaining GPU computation times within two milliseconds.

Details

1009240
Identifier / keyword
Title
FIRE-3DV: Framework-Independent Rendering Engine for 3D Graphics using Vulkan
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 13, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-16
Milestone dates
2024-10-07 (Submission v1); 2024-12-13 (Submission v2)
Publication history
 
 
   First posting date
16 Dec 2024
ProQuest document ID
3145273730
Document URL
https://www.proquest.com/working-papers/fire-3dv-framework-independent-rendering-engine/docview/3145273730/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-17
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic