Content area

Abstract

The intersection of technology and mental health has spurred innovative approaches to assessing emotional well-being, particularly through computational techniques applied to audio data analysis. This study explores the application of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models on wavelet extracted features and Mel-frequency Cepstral Coefficients (MFCCs) for emotion detection from spoken speech. Data augmentation techniques, feature extraction, normalization, and model training were conducted to evaluate the models' performance in classifying emotional states. Results indicate that the CNN model achieved a higher accuracy of 61% compared to the LSTM model's accuracy of 56%. Both models demonstrated better performance in predicting specific emotions such as surprise and anger, leveraging distinct audio features like pitch and speed variations. Recommendations include further exploration of advanced data augmentation techniques, combined feature extraction methods, and the integration of linguistic analysis with speech characteristics for improved accuracy in mental health diagnostics. Collaboration for standardized dataset collection and sharing is recommended to foster advancements in affective computing and mental health care interventions.

Details

1009240
Title
Comparative Analysis of Mel-Frequency Cepstral Coefficients and Wavelet Based Audio Signal Processing for Emotion Detection and Mental Health Assessment in Spoken Speech
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 12, 2024
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-17
Milestone dates
2024-12-12 (Submission v1)
Publication history
 
 
   First posting date
17 Dec 2024
ProQuest document ID
3145901130
Document URL
https://www.proquest.com/working-papers/comparative-analysis-mel-frequency-cepstral/docview/3145901130/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-20
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic