Content area

Abstract

Background: Formulation, associated with suicide risk assessment, is an individualised process that seeks to understand the idiosyncratic nature and development of an individual's problems. Auditing clinical documentation on an electronic health record (EHR) is challenging as it requires resource-intensive manual efforts to identify keywords in relevant sections of specific forms. Furthermore, clinicians and healthcare professionals often do not use keywords; their clinical language can vary greatly and may contain various jargon and acronyms. Also, the relevant information may be recorded elsewhere. This study describes how we developed advanced Natural Language Processing (NLP) algorithms, a branch of Artificial Intelligence (AI), to analyse EHR data automatically. Method: Advanced Optical Character Recognition techniques were used to process unstructured data sets, such as portable document format (pdf) files. Free text data was cleaned and pre-processed using Normalisation of Free Text techniques. We developed algorithms and tools to unify the free text. Finally, the formulation was checked for the presence of each concept based on similarity using NLP-powered semantic matching techniques. Results: We extracted information indicative of formulation and assessed it to cover the relevant concepts. This was achieved using a Weighted Score to obtain a Confidence Level. Conclusion: The rigour to which formulation is completed is crucial to effectively using EHRs, ensuring correct and timely identification, engagement and interventions that may potentially avoid many suicide attempts and suicides.

Details

1009240
Title
AI-assisted summary of suicide risk Formulation
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 19, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-23
Milestone dates
2024-11-29 (Submission v1); 2024-12-19 (Submission v2)
Publication history
 
 
   First posting date
23 Dec 2024
ProQuest document ID
3145902645
Document URL
https://www.proquest.com/working-papers/ai-assisted-summary-suicide-risk-formulation/docview/3145902645/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-24
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic