Full Text

Turn on search term navigation

© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

ABSTRACT

Objectives

Advancements in artificial intelligence (AI)‐driven predictive modeling in dentistry are outpacing the clinical translation of research findings. Predictive modeling uses statistical methods to anticipate norms related to TMJ dynamics, complementing imaging modalities like cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI). Deep learning, a subset of AI, helps quantify and analyze complex hierarchical relationships in occlusion and TMJ function. This narrative review explores the application of predictive modeling and deep learning to identify clinical trends and associations related to occlusion and TMJ function.

Results

Debates persist regarding best practices for managing occlusal factors in temporomandibular joint (TMJ) function analysis while interpreting and quantifying findings related to the TMJ and occlusion and mitigating biases remain challenging. Data generated from noninvasive chairside tools such as jaw trackers, video tracking, and 3D scanners with virtual articulators offer unique insights by predicting variations in dynamic jaw movement, TMJ, and occlusion. The predictions help us understand the highly individualized norms surrounding TMJ function that are often required to address temporomandibular disorders (TMDs) in general practice.

Conclusions

Normal TMJ function, occlusion, and the appropriate management of TMDs are complex and continue to attract ongoing debate. This review examines how predictive modeling and artificial intelligence aid in understanding occlusion and TMJ function and provides insights into complex dental conditions such as TMDs that may improve diagnosis and treatment outcomes with noninvasive techniques.

Details

Title
Understanding Occlusion and Temporomandibular Joint Function Using Deep Learning and Predictive Modeling
Author
Farook, Taseef Hasan 1   VIAFID ORCID Logo  ; Dudley, James 1   VIAFID ORCID Logo 

 Adelaide Dental School, The University of Adelaide, South Australia, Australia 
Section
REVIEW ARTICLE
Publication year
2024
Publication date
Dec 1, 2024
Publisher
John Wiley & Sons, Inc.
e-ISSN
20574347
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3147062240
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.