Content area

Abstract

Modern Out-of-Order (OoO) CPUs are complex systems with many components interleaved in non-trivial ways. Pinpointing performance bottlenecks and understanding the underlying causes of program performance issues are critical tasks to fully exploit the performance offered by hardware resources. Current performance debugging approaches rely either on measuring resource utilization, in order to estimate which parts of a CPU induce performance limitations, or on code-based analysis deriving bottleneck information from capacity/throughput models. These approaches are limited by instrumental and methodological precision, present portability constraints across different microarchitectures, and often offer factual information about resource constraints, but not causal hints about how to solve them. This paper presents a novel performance debugging and analysis tool that implements a resource-centric CPU model driven by dynamic binary instrumentation that is capable of detecting complex bottlenecks caused by an interplay of hardware and software factors. Bottlenecks are detected through sensitivity-based analysis, a sort of model parameterization that uses differential analysis to reveal constrained resources. It also implements a new technique we developed that we call causality analysis, that propagates constraints to pinpoint how each instruction contribute to the overall execution time. To evaluate our analysis tool, we considered the set of high-performance computing kernels obtained by applying a wide range of transformations from the Polybench benchmark suite and measured the precision on a few Intel CPU and Arm micro-architectures. We also took one of the benchmarks (correlation) as an illustrative example to illustrate how our tool's bottleneck analysis can be used to optimize a code.

Details

1009240
Title
Performance Debugging through Microarchitectural Sensitivity and Causality Analysis
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 3, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-19
Milestone dates
2024-12-03 (Submission v1)
Publication history
 
 
   First posting date
19 Dec 2024
ProQuest document ID
3147264633
Document URL
https://www.proquest.com/working-papers/performance-debugging-through-microarchitectural/docview/3147264633/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-20
Database
ProQuest One Academic