Content area

Abstract

Machine learning is now widely applied across various domains, including industry, engineering, and research. While numerous mature machine learning models have been open-sourced on platforms like GitHub, their deployment often requires writing scripts in specific programming languages, such as Python, C++, or MATLAB. This dependency on particular languages creates a barrier for professionals outside the field of machine learning, making it challenging to integrate these algorithms into their workflows. To address this limitation, we propose GPgym, a remote service node based on Gaussian process regression. GPgym enables experts from diverse fields to seamlessly and flexibly incorporate machine learning techniques into their existing specialized software, without needing to write or manage complex script code.

Details

1009240
Identifier / keyword
Title
GPgym: A Remote Service Platform with Gaussian Process Regression for Online Learning
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 17, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-19
Milestone dates
2024-12-17 (Submission v1)
Publication history
 
 
   First posting date
19 Dec 2024
ProQuest document ID
3147264961
Document URL
https://www.proquest.com/working-papers/gpgym-remote-service-platform-with-gaussian/docview/3147264961/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-20
Database
ProQuest One Academic