Content area

Abstract

The advancement of high-performance computing has enabled the generation of large direct numerical simulation (DNS) datasets of turbulent flows, driving the need for efficient compression/decompression techniques that reduce storage demands while maintaining fidelity. Traditional methods, such as the discrete wavelet transform, cannot achieve compression ratios of 8 or higher for complex turbulent flows without introducing significant encoding/decoding errors. On the other hand, super-resolution generative adversarial networks (SR-GANs) can accurately reconstruct fine-scale features, preserving velocity gradients and structural details, even at a compression ratio of 512, thanks to the adversarial training enabled by the discriminator. Their high training time is significantly reduced with a progressive transfer learning approach and, once trained, they can be applied independently of the Reynolds number. It is demonstrated that SR-GANs can enhance dataset temporal resolution without additional simulation overhead by generating high-quality intermediate fields from compressed snapshots. The SR-GAN discriminator can reliably evaluate the quality of decoded fields, ensuring fidelity even in the absence of original DNS fields. Hence, SR-GAN-based compression/decompression methods present a highly efficient and scalable alternative for large-scale DNS storage and transfer, offering substantial advantages in terms of compression efficiency, reconstruction fidelity, and temporal resolution enhancement.

Details

1009240
Identifier / keyword
Title
Super-Resolution Generative Adversarial Network for Data Compression of Direct Numerical Simulations
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 18, 2024
Section
Physics (Other)
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-19
Milestone dates
2024-12-18 (Submission v1)
Publication history
 
 
   First posting date
19 Dec 2024
ProQuest document ID
3147267066
Document URL
https://www.proquest.com/working-papers/super-resolution-generative-adversarial-network/docview/3147267066/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-20
Database
ProQuest One Academic