Content area

Abstract

AI infrastructures, predominantly GPUs, have delivered remarkable performance gains for deep learning. Conversely, scientific computing, exemplified by quantum chemistry systems, suffers from dynamic diversity, where computational patterns are more diverse and vary dynamically, posing a significant challenge to sponge acceleration off GPUs. In this paper, we propose Matryoshka, a novel elastically-parallel technique for the efficient execution of quantum chemistry system with dynamic diversity on GPU. Matryoshka capitalizes on Elastic Parallelism Transformation, a property prevalent in scientific systems yet underexplored for dynamic diversity, to elastically realign parallel patterns with GPU architecture. Structured around three transformation primitives (Permutation, Deconstruction, and Combination), Matryoshka encompasses three core components. The Block Constructor serves as the central orchestrator, which reformulates data structures accommodating dynamic inputs and constructs fine-grained GPU-efficient compute blocks. Within each compute block, the Graph Compiler operates offline, generating high-performance code with clear computational path through an automated compilation process. The Workload Allocator dynamically schedules workloads with varying operational intensities to threads online. It achieves highly efficient parallelism for compute-intensive operations and facilitates fusion with neighboring memory-intensive operations automatically. Extensive evaluation shows that Matryoshka effectively addresses dynamic diversity, yielding acceleration improvements of up to 13.86x (average 9.41x) over prevailing state-of-the-art approaches on 13 quantum chemistry systems.

Details

1009240
Title
Matryoshka: Optimization of Dynamic Diverse Quantum Chemistry Systems via Elastic Parallelism Transformation
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 23, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-24
Milestone dates
2024-12-03 (Submission v1); 2024-12-23 (Submission v2)
Publication history
 
 
   First posting date
24 Dec 2024
ProQuest document ID
3147267343
Document URL
https://www.proquest.com/working-papers/matryoshka-optimization-dynamic-diverse-quantum/docview/3147267343/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-25
Database
ProQuest One Academic