Content area

Abstract

The performance of quantum key distribution (QKD) heavily depends on statistical inference. For a broad class of protocols, the central statistical task is a random sampling problem, customarily addressed using exponential tail bounds on the hypergeometric distribution. Here we devise a strikingly simple exponential bound for this task, of unprecedented tightness among QKD security analyses. As a by-product, confidence intervals for the average of non-identical Bernoulli parameters follow too. These naturally fit in statistical analyses of decoy-state QKD and also outperform standard tools. Lastly, we show that, in a vast parameter regime, the use of tail bounds is not enforced because the cumulative mass function of the hypergeometric distribution is accurately computable. This sharply decreases the minimum block sizes necessary for QKD, and reveals the tightness of our simple analytical bounds when moderate-to-large blocks are considered.

Details

1009240
Title
Sharp finite statistics for quantum key distribution
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 18, 2024
Section
Quantum Physics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-19
Milestone dates
2024-10-05 (Submission v1); 2024-12-17 (Submission v2); 2024-12-18 (Submission v3)
Publication history
 
 
   First posting date
19 Dec 2024
ProQuest document ID
3147269143
Document URL
https://www.proquest.com/working-papers/sharp-finite-statistics-quantum-key-distribution/docview/3147269143/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-20
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic