Content area

Abstract

This paper serves as a reference and introduction to using the R package dapper. dapper encodes a sampling framework which allows exact Markov chain Monte Carlo simulation of parameters and latent variables in a statistical model given privatized data. The goal of this package is to fill an urgent need by providing applied researchers with a flexible tool to perform valid Bayesian inference on data protected by differential privacy, allowing them to properly account for the noise introduced for privacy protection in their statistical analysis. dapper offers a significant step forward in providing general-purpose statistical inference tools for privatized data.

Details

1009240
Identifier / keyword
Title
dapper: Data Augmentation for Private Posterior Estimation in R
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 19, 2024
Section
Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-20
Milestone dates
2024-12-19 (Submission v1)
Publication history
 
 
   First posting date
20 Dec 2024
ProQuest document ID
3147567812
Document URL
https://www.proquest.com/working-papers/dapper-data-augmentation-private-posterior/docview/3147567812/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-21
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic