Content area

Abstract

Despite significant ongoing efforts in safety alignment, large language models (LLMs) such as GPT-4 and LLaMA 3 remain vulnerable to jailbreak attacks that can induce harmful behaviors, including through the use of adversarial suffixes. Building on prior research, we hypothesize that these adversarial suffixes are not mere bugs but may represent features that can dominate the LLM's behavior. To evaluate this hypothesis, we conduct several experiments. First, we demonstrate that benign features can be effectively made to function as adversarial suffixes, i.e., we develop a feature extraction method to extract sample-agnostic features from benign dataset in the form of suffixes and show that these suffixes may effectively compromise safety alignment. Second, we show that adversarial suffixes generated from jailbreak attacks may contain meaningful features, i.e., appending the same suffix to different prompts results in responses exhibiting specific characteristics. Third, we show that such benign-yet-safety-compromising features can be easily introduced through fine-tuning using only benign datasets. As a result, we are able to completely eliminate GPT's safety alignment in a blackbox setting through finetuning with only benign data. Our code and data is available at \url{https://github.com/suffix-maybe-feature/adver-suffix-maybe-features}.

Details

1009240
Title
Unleashing the Unseen: Harnessing Benign Datasets for Jailbreaking Large Language Models
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 19, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-20
Milestone dates
2024-10-01 (Submission v1); 2024-10-05 (Submission v2); 2024-12-19 (Submission v3)
Publication history
 
 
   First posting date
20 Dec 2024
ProQuest document ID
3147571297
Document URL
https://www.proquest.com/working-papers/unleashing-unseen-harnessing-benign-datasets/docview/3147571297/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-21
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic