Content area

Abstract

Conventional expression studies quantify messenger RNA (mRNA) transcript levels gene-by-gene. We recently showed that protein expression is modulated at a global scale by amino acid availability, suggesting that mRNA expression levels might be similarly affected by nucleobase supply. Re-analysis of transcriptomic datasets confirmed that nucleobase supply and mRNA A+U:C+G sequence composition interact to shape a global profile of expression which can be represented by simple numerical outputs. In mammals, each separate organ and cell-type displays a distinct baseline profile of expression, influenced by differentiation state. Expression profiles shift dynamically across the circadian day and the menstrual cycle. They are also significantly distorted by viral infection, multiple complex genetic disorders (including Alzheimer's disease, schizophrenia, and autoimmune disorders), and after treatment with 115 of the 597 chemical entities analysed. These entities included known toxins, but also many commonly prescribed medications such as antibiotics and proton pump inhibitors, thus revealing a new mechanism of drug action and side-effect. A role for nucleobase supply is supported by the actions of nucleobase analogue treatments and by a model of the nucleobase metabolism disorder, Lesch-Nyhan syndrome. On the demand-side, mRNAs at compositional extremes are over-represented in key gene ontologies including transcription and cell division, making these processes particularly sensitive to swings in global expression. This permits efficient en bloc reprogramming of cell state through simple changes in nucleobase proportion and supply. It is also proposed that this mechanism helped mitigate the loss of essential amino acid synthesis in higher organisms. In summary, global expression regulation is invisible to conventional transcriptomic analysis, but its measurement allows a useful distinction between active, promoter-mediated gene expression changes and passive, cell state-dependent transcriptional competence. Linking metabolism directly to expression offers an entirely new perspective on evolution, disease aetiopathology (including GxE interactions), and the nature of the pharmacological response.

Competing Interest Statement

The authors have declared no competing interest.

Details

1009240
Title
Gene expression is globally regulated by interacting nucleobase supply and mRNA composition demand: a mechanism disrupted by multiple disease states and drug treatments
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2024
Publication date
Dec 23, 2024
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
ProQuest document ID
3148678922
Document URL
https://www.proquest.com/working-papers/gene-expression-is-globally-regulated-interacting/docview/3148678922/se-2?accountid=208611
Copyright
© 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-24
Database
ProQuest One Academic