Content area

Abstract

Internet of Things (IoT) devices in smart grids enable intelligent energy management for grid managers and personalized energy services for consumers. Investigating a smart grid with IoT devices requires a simulation framework with IoT devices modeling. However, there lack comprehensive study on the modeling of IoT devices in smart grids. This paper investigates the IoT device modeling of a thermostatic load and implements the recurrent neural networks model for short-term load forecasting in this IoT-based thermostatic load. The recurrent neural network structure is leveraged to build a load forecasting model on temporal correlation. The temporal recurrent neural network layers including long short-term memory cells are employed to learn the data from both the simulation platform and New South Wales residential datasets. The simulation results are provided for demonstration.

Details

1009240
Identifier / keyword
Title
Short-Term Forecasting of Thermostatic and Residential Loads Using Long Short-Term Memory Recurrent Neural Networks
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 20, 2024
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-23
Milestone dates
2024-12-20 (Submission v1)
Publication history
 
 
   First posting date
23 Dec 2024
ProQuest document ID
3148682471
Document URL
https://www.proquest.com/working-papers/short-term-forecasting-thermostatic-residential/docview/3148682471/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-24
Database
ProQuest One Academic