Content area

Abstract

Since its inception in 2016, Federated Learning (FL) has been gaining tremendous popularity in the machine learning community. Several frameworks have been proposed to facilitate the development of FL algorithms, but researchers often resort to implementing their algorithms from scratch, including all baselines and experiments. This is because existing frameworks are not flexible enough to support their needs or the learning curve to extend them is too steep. In this paper, we present \fluke, a Python package designed to simplify the development of new FL algorithms. fluke is specifically designed for prototyping purposes and is meant for researchers or practitioners focusing on the learning components of a federated system. fluke is open-source, and it can be either used out of the box or extended with new algorithms with minimal overhead.

Details

1009240
Title
fluke: Federated Learning Utility frameworK for Experimentation and research
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 20, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-23
Milestone dates
2024-12-20 (Submission v1)
Publication history
 
 
   First posting date
23 Dec 2024
ProQuest document ID
3148683152
Document URL
https://www.proquest.com/working-papers/fluke-federated-learning-utility-framework/docview/3148683152/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-24
Database
ProQuest One Academic