Content area

Abstract

This study introduces an adaptive user interface generation technology, emphasizing the role of Human-Computer Interaction (HCI) in optimizing user experience. By focusing on enhancing the interaction between users and intelligent systems, this approach aims to automatically adjust interface layouts and configurations based on user feedback, streamlining the design process. Traditional interface design involves significant manual effort and struggles to meet the evolving personalized needs of users. Our proposed system integrates adaptive interface generation with reinforcement learning and intelligent feedback mechanisms to dynamically adjust the user interface, better accommodating individual usage patterns. In the experiment, the OpenAI CLIP Interactions dataset was utilized to verify the adaptability of the proposed method, using click-through rate (CTR) and user retention rate (RR) as evaluation metrics. The findings highlight the system's ability to deliver flexible and personalized interface solutions, providing a novel and effective approach for user interaction design and ultimately enhancing HCI through continuous learning and adaptation.

Details

1009240
Identifier / keyword
Title
Adaptive User Interface Generation Through Reinforcement Learning: A Data-Driven Approach to Personalization and Optimization
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 22, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-24
Milestone dates
2024-12-22 (Submission v1)
Publication history
 
 
   First posting date
24 Dec 2024
ProQuest document ID
3148947043
Document URL
https://www.proquest.com/working-papers/adaptive-user-interface-generation-through/docview/3148947043/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-25
Database
ProQuest One Academic