Content area

Abstract

Automating high-volume unstructured data processing is essential for operational efficiency. Optical Character Recognition (OCR) is critical but often struggles with accuracy and efficiency in complex layouts and ambiguous text. These challenges are especially pronounced in large-scale tasks requiring both speed and precision. This paper introduces LMV-RPA, a Large Model Voting-based Robotic Process Automation system to enhance OCR workflows. LMV-RPA integrates outputs from OCR engines such as Paddle OCR, Tesseract OCR, Easy OCR, and DocTR with Large Language Models (LLMs) like LLaMA 3 and Gemini-1.5-pro. Using a majority voting mechanism, it processes OCR outputs into structured JSON formats, improving accuracy, particularly in complex layouts. The multi-phase pipeline processes text extracted by OCR engines through LLMs, combining results to ensure the most accurate outputs. LMV-RPA achieves 99 percent accuracy in OCR tasks, surpassing baseline models with 94 percent, while reducing processing time by 80 percent. Benchmark evaluations confirm its scalability and demonstrate that LMV-RPA offers a faster, more reliable, and efficient solution for automating large-scale document processing tasks.

Details

1009240
Business indexing term
Title
LMV-RPA: Large Model Voting-based Robotic Process Automation
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 23, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-25
Milestone dates
2024-12-23 (Submission v1)
Publication history
 
 
   First posting date
25 Dec 2024
ProQuest document ID
3149107013
Document URL
https://www.proquest.com/working-papers/lmv-rpa-large-model-voting-based-robotic-process/docview/3149107013/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-26
Database
ProQuest One Academic