Content area

Abstract

This work presents a data-driven solution to accurately predict parameterized nonlinear fluid dynamical systems using a dynamics-generator conditional GAN (Dyn-cGAN) as a surrogate model. The Dyn-cGAN includes a dynamics block within a modified conditional GAN, enabling the simultaneous identification of temporal dynamics and their dependence on system parameters. The learned Dyn-cGAN model takes into account the system parameters to predict the flow fields of the system accurately. We evaluate the effectiveness and limitations of the developed Dyn-cGAN through numerical studies of various parameterized nonlinear fluid dynamical systems, including flow over a cylinder and a 2-D cavity problem, with different Reynolds numbers. Furthermore, we examine how Reynolds number affects the accuracy of the predictions for both case studies. Additionally, we investigate the impact of the number of time steps involved in the process of dynamics block training on the accuracy of predictions, and we find that an optimal value exists based on errors and mutual information relative to the ground truth.

Details

1009240
Identifier / keyword
Title
Data-driven Modeling of Parameterized Nonlinear Fluid Dynamical Systems with a Dynamics-embedded Conditional Generative Adversarial Network
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 23, 2024
Section
Computer Science; Nonlinear Sciences
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-25
Milestone dates
2024-12-23 (Submission v1)
Publication history
 
 
   First posting date
25 Dec 2024
ProQuest document ID
3149107271
Document URL
https://www.proquest.com/working-papers/data-driven-modeling-parameterized-nonlinear/docview/3149107271/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-26
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic