Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study investigates the influence of electromagnetic fields on the propulsion performance of laser plasma propulsion. Based on the principle of pulsed plasma thrusters, an electromagnetic field is utilized to accelerate laser plasma, achieving enhanced propulsion performance. This approach represents a novel method for the electromagnetic enhancement of laser propulsion performance. In this paper, pulsed plasma thrusters induced by laser ablation are employed. The generated plasma is subjected to the Lorentz force under the influence of an electromagnetic field to obtain higher speed, thus increasing impulse and specific impulse. An experimental platform for laser-ablation plasma electromagnetic acceleration was constructed to explore the enhancement effect of discharge characteristics and propulsion performance. The results demonstrate that increased laser energy has little effect on discharge characteristics, while the trend of propulsion performance parameters initially rises and then declines. After coupling the electromagnetic field, the propulsion performance is significantly enhanced, with stronger electromagnetic fields yielding more pronounced effects.

Details

Title
Experimental Study on the Propulsion Performance of Laser Ablation Induced Pulsed Plasma
Author
Song, Hang; Ye, Jifei  VIAFID ORCID Logo  ; Wen, Ming; Cui, Haichao; Zhao, Wentao
First page
1013
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149492716
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.