Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The accurate mapping of weeds in agricultural fields is essential for effective weed control and enhanced crop productivity. Moving beyond the limitations of RGB imagery alone, this study presents a cross-modal feature fusion network (CMFNet) designed for precise weed mapping by integrating RGB and near-infrared (NIR) imagery. CMFNet first applies color space enhancement and adaptive histogram equalization to improve the image brightness and contrast in both RGB and NIR images. Building on a Transformer-based segmentation framework, a cross-modal multi-scale feature enhancement module is then introduced, featuring spatial and channel feature interaction to automatically capture complementary information across two modalities. The enhanced features are further fused and refined by integrating an attention mechanism, which reduces the background interference and enhances the segmentation accuracy. Extensive experiments conducted on two public datasets, the Sugar Beets 2016 and Sunflower datasets, demonstrate that CMFNet significantly outperforms CNN-based segmentation models in the task of weed and crop segmentation. The model achieved an Intersection over Union (IoU) metric of 90.86% and 90.77%, along with a Mean Accuracy (mAcc) of 93.8% and 94.35%, respectively. Ablation studies further validate that the proposed cross-modal fusion method provides substantial improvements over basic feature fusion methods, effectively localizing weed and crop regions across diverse field conditions. These findings underscore their potential as a robust solution for precise and adaptive weed mapping in complex agricultural landscapes.

Details

Title
Cross-Modal Feature Fusion for Field Weed Mapping Using RGB and Near-Infrared Imagery
Author
Fan, Xijian 1 ; Ge, Chunlei 1 ; Yang, Xubing 1 ; Wang, Weice 2 

 College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China 
 Fujian Key Laboratory of Spatial Information Perception and Intelligent Processing, Yango University, Fuzhou 350015, China 
First page
2331
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149494620
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.