Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The prioritization of bug reports based on severity is a crucial aspect of bug triaging, enabling a focus on more critical issues. Traditional methods for assessing bug severity range from manual inspection to the application of machine and deep learning techniques. However, manual evaluation tends to be resource-intensive and inefficient, while conventional learning models often lack contextual understanding. This study explores the effectiveness of large language models (LLMs) in predicting bug report severity. We propose a novel approach called SevPredict using GPT-2, an advanced LLM, and compare it against state-of-the-art models. The comparative analysis between the proposed approach and state-of-the-art approaches suggests that the proposed approach outperforms the state-of-the-art approaches in terms of performance evaluation metrics. SevPredict shows improvements over the best-performing state-of-the-art approach (BERT-SBR) with 1.72% higher accuracy, 2.18% higher precision, and 4.94% higher MCC. The improvements are even more substantial when compared to the approach by Ramay et al., with SevPredict demonstrating 10.66% higher accuracy, 10.39% higher precision, 3.29% higher recall, 7.19% higher F1-score, and a remarkable 41.27% higher MCC. These findings not only demonstrate the superiority of our GPT-2-based approach in predicting the severity of bug reports but also highlight its potential to significantly advance automated bug triaging and software maintenance. This research introduces a severity prediction tool named SevPredict.

Details

Title
SevPredict: Exploring the Potential of Large Language Models in Software Maintenance
Author
Muhammad Ali Arshad 1 ; Riaz, Adnan 2   VIAFID ORCID Logo  ; Rubia Fatima 3   VIAFID ORCID Logo  ; Yasin, Affan 4   VIAFID ORCID Logo 

 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; [email protected] 
 Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy 
 Faculty of Computing and Emerging Technologies, Emerson University, Multan 60000, Pakistan; [email protected] 
 School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China 
First page
2739
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
26732688
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149498902
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.