Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper we present a new extension of the truncated positive normal (TPN) model, called power truncated positive normal. This extension incorporates a shape parameter that provides more flexibility to the model. In addition, this new extension was reparameterized based on the p-th quantile of the distribution in order to perform quantile regression. The initial values were calculated from a modification of the moment estimators, which allowed the maximum likelihood estimators to be obtained. A simulation study was carried out which suggests good behavior of the maximum likelihood estimators in finite samples. Finally, two applications using health databases are presented.

Details

Title
Power Truncated Positive Normal Distribution: A Quantile Regression Approach Applied to Health Databases
Author
Santoro, Karol I 1   VIAFID ORCID Logo  ; Gómez, Héctor J 2   VIAFID ORCID Logo  ; Cortés, Isaac E 3   VIAFID ORCID Logo  ; Magalhães, Tiago M 4   VIAFID ORCID Logo  ; Gallardo, Diego I 5   VIAFID ORCID Logo 

 Departamento de Estadística y Ciencia de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile; [email protected] 
 Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile 
 Facultad de Ciencias, Universidad Arturo Prat, Avenida Arturo Prat 2120, Iquique 1110939, Chile; [email protected] 
 Department of Statistics, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; [email protected] 
 Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile; [email protected] 
First page
811
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20751680
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149501798
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.