Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nature-based Solutions (NbSs) play a pivotal role in mitigating the impact of microclimates on human well-being. The effectiveness of NbSs is contingent upon the synergy between natural capital, defined by the ecological structure and functions of the ecosystem, and human-derived capital, encompassing the economic investments required for implementation. This study introduces a decision-making framework designed to evaluate the impact of NbSs and advocate for optimal solutions for human health at the local scale, amalgamating ecological and economic assessments. Physiological Equivalent Temperature (PET) was chosen as a key urban parameter to assess the efficacy of NbSs in mitigating urban microclimates and enhancing human health. The PET analysis was conducted using ENVI-met 5.0.3 software across diverse urban scenarios in Gallipoli city, Italy. Integrated with a cost–benefit analysis of NbSs considering various investment scenarios, the study aimed to identify the most effective solution. Results indicated positive effects of NbSs in open spaces and around building blocks where the PET levels remained below 30 °C. Conversely, scenarios without NbSs exhibited PETs exceeding 40 °C, with peaks of 50 °C, posing potential risks to human health. Considering the social and economic benefits associated with PET mitigation, the cost–benefit analysis suggests that implementing NbSs using a mix of young and mature plants in the initial phase is advantageous compared to using only young plants. Thus, in establishing NbSs, it is crucial to consider not only the quantity of vegetation but also the strategic timing of implementation. In conclusion, our work offers an innovative framework that combines ecological and economic perspectives, providing valuable insights for decision-makers in urban planning and promoting the practical application of NbSs for enhanced human well-being.

Details

Title
Nature-Based Solutions Planning for Urban Microclimate Improvement and Health: An Integrated Ecological and Economic Approach
Author
Semeraro, Teodoro 1   VIAFID ORCID Logo  ; Calisi, Antonio 2   VIAFID ORCID Logo  ; Hang, Jian 3 ; Rohinton Emmanuel 4   VIAFID ORCID Logo  ; Buccolieri, Riccardo 5   VIAFID ORCID Logo 

 Research Institute on Terrestrial Ecosystems (IRET-URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, 73100 Lecce, Italy 
 Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Viale Michel 11, 15121 Alessandria, Italy; [email protected] 
 School of Atmosphere Sciences, Sun Yat-sen University, Zhuhai 519082, China; [email protected] 
 The Research Centre for Built Environment Asset Management (BEAM), Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, UK; [email protected] 
 Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy; [email protected] 
First page
2143
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149695166
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.