Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Frequency-selective surfaces (FSSs) have attracted great attention owing to their unique feature to manipulate transmission performance over the frequency domain. In this work, a filtering antenna-filtering antenna (FA-FA) FSS with a wide passband and double-side sharp roll-off characteristics is presented by inter-using the filtering antenna and receiving–transmitting metasurface methods. First, a dual-polarized filtering antenna element was designed by employing a parasitic band-stop structure with an L-probe feed. Then, the FA-FA-based FSS unit was constructed by placing two such filtering antennas back to back, with their feedings connected through metallic vias. Finally, the FSS with a wide passband and high selectivity was realized by arraying the FA-FA units periodically. The full-wave simulation results demonstrated that the designed FA-FA-based FSS had a wide passband from 13.06 GHz to 14.46 GHz with a flat in-band frequency response. The lower and upper roll-off bandwidths were sharp, reaching 1% and 1.2% of the center frequency. The proposed FA-FA-based FSS was fabricated and measured, achieving the coincident performance according to the theoretical prediction. The wideband band-pass FSS obtained a sharp double-side roll-off feature, which can be applied in various studies such as an antenna array, metasurface, communication, etc.

Details

Title
A Wide Passband Frequency-Selective Surface with a Sharp Roll-Off Band Using the Filtering Antenna-Filtering Antenna Method
Author
Ren, Yanfei 1 ; Zhenghu Xi 2 ; Liu, Qinqin 3 ; Gong, Jiayi 3 ; Sun, Zhiwei 4   VIAFID ORCID Logo  ; Boyu Sima 3   VIAFID ORCID Logo 

 The 10th Research Institute of China Electronics Technology Group Corporation, No. 85 Yingkang West Road, Jinniu District, Chengdu 250102, China; [email protected] 
 Shanghai Radio Equipment Research Institute, Shanghai Academy of Spaceflight Technology, Shanghai 201109, China; [email protected] 
 Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; [email protected] (Q.L.); [email protected] (J.G.) 
 School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China 
First page
6131
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149705072
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.