Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Narrow-gap arc welding is an efficient method that significantly enhances industrial production efficiency and reduces costs. This study investigates the application of low-alloy steel wire EG70-G in narrow-gap gas metal arc welding (GMAW) on thick plates. Experimental observations were made to examine the arc behavior, droplet transition behavior, and weld formation characteristics of double-wire welding under various process parameters. Additionally, the temperature field of the welding process was simulated using finite element software (ABAQUS 2020). Finally, the microstructure and microhardness of the fusion zone in a double-wire, single-pass filled joint under the different welding speeds were compared and analyzed. The results demonstrate that the use of double-wire GMAW in narrow-gap welding yielded positive outcomes. Optimal settings for wire feeding speed, welding speed, and double-wire lateral spacing significantly enhanced welding quality, effectively preventing side wall non-fusion and poor weld profiles in the welded joints. The microstructure of the fusion zone produced at a higher welding speed (11 mm/s) was finer, resulting in increased microhardness compared to welds obtained at a lower speed (8 mm/s). This is attributed to the shorter duration of the liquid molten pool and the faster cooling rate associated with higher welding speed. This research provides a reference for the practical application of double-wire narrow-gap gas metal arc welding technology.

Details

Title
Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel
Author
Xiao, Ning 1 ; Kong, Haoyu 2 ; Sun, Qingjie 2 ; Ma, Ninshu 3   VIAFID ORCID Logo 

 METALLECO Inc., No. 3185 Dundas St. W, 2F, Oakville, ON L6M 4J4, Canada; [email protected]; Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan 
 STUAA Automation Co., Ltd., No. 1000 South Langyatai Road, Qingdao 266400, China; [email protected] 
 Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan 
First page
6183
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149705375
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.