Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD). Due to the existence of the side mode and angular mode, the transmission spectrum presents two high transmittance peaks and two low transmittance peaks. In addition, the four transmission peaks exhibit different variation trends when the dimensions of the isosceles triangle are changed. The liquid crystal (LC) materials comprise anisotropic uniaxial crystal and exhibit a remarkable birefringence effect under the action of the external field. When the isosceles triangle coupling structure is filled with LC, the refractive index of the liquid crystal can be changed by changing the applied voltage, thereby achieving the function of an optical switch. Within a certain range, a linear relationship between refractive index and applied voltage can be obtained. Moreover, the proposed structure can be applied to biochemical sensing to detect glucose concentrations, and the sensitivity reaches as high as 0.283 nm·L/g, which is significantly higher than other values reported in the literature. The triangular coupling structure has advantages such as simple structure and ease of manufacturing, making it an ideal choice for the design of high-performance integrated plasmonic devices.

Details

Title
Applications of Isosceles Triangular Coupling Structure in Optical Switching and Sensing
Author
Zeng, Lili 1 ; Zhang, Xingjiao 2 ; Guo, Qinghua 1 ; Yang, Fan 3 ; Deng, Yuanwen 3 ; Ma, Zhengchao 3 ; Li, Boxun 3 

 New Energy Institute, Hunan Vocational Institute of Technology, Xiangtan 411104, China; [email protected] (L.Z.); 
 School of Mechatronics Engineering, Ping Xiang University, Pingxiang 337055, China 
 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
First page
8221
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149752464
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.