Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance. Tele-kinesthesia is achieved using a leader–follower integrated system, and stable force feedback is provided using a novel impedance-matching force rendering approach. In this domain, augmented reality employs a magnetic-tracker-based approach for real-time 3D model projection onto the patient’s body, aiming to augment the physician’s visual field and improve needle insertion accuracy. Preliminary results indicate that our AR-enhanced robotic system may reduce the cognitive load and improve the accuracy of ENI, highlighting the promise of AR technologies in complex medical procedures. However, further studies with larger sample sizes and more diverse clinical settings must comprehensively validate these findings. This work lays the groundwork for future research into integrating AR into medical robotics, potentially transforming clinical practices by enhancing procedural safety and efficiency.

Details

Title
Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions
Author
Sayadi, Amir  VIAFID ORCID Logo  ; Cecere, Renzo  VIAFID ORCID Logo  ; Barralet, Jake  VIAFID ORCID Logo  ; Feldman, Liane S; Hooshiar, Amir
First page
7959
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149752884
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.