It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Inadequate response to androgen deprivation therapy (ADT) frequently arises in prostate cancer, driven by cellular mechanisms that remain poorly understood. Here, we integrated single-cell RNA sequencing, single-cell multiomics, and spatial transcriptomics to define the transcriptional, epigenetic, and spatial basis of cell identity and castration response in the mouse prostate. Leveraging these data along with a meta-analysis of human prostates and prostate cancer, we identified cellular orthologs and key determinants of ADT response and resistance. Our findings reveal that mouse prostates harbor lobe-specific luminal epithelial cell types distinguished by unique gene regulatory modules and anatomically defined androgen-responsive transcriptional programs, indicative of divergent developmental origins. Androgen-insensitive, stem-like epithelial populations - resembling human club and hillock cells - are notably enriched in the urethra and ventral prostate but are rare in other lobes. Within the ventral prostate, we also uncovered two additional androgen-responsive luminal epithelial cell types, marked by Pbsn or Spink1 expression, which align with human luminal subsets and may define the origin of distinct prostate cancer subtypes. Castration profoundly reshaped luminal epithelial transcriptomes, with castration-resistant luminal epithelial cells activating stress-responsive and stemness programs. These transcriptional signatures are enriched in tumor cells from ADT-treated and castration-resistant prostate cancer patients, underscoring their likely role in driving treatment resistance. Collectively, our comprehensive cellular atlas of the mouse prostate illuminates the importance of lobe-specific contexts for prostate cancer modeling and reveals potential therapeutic targets to counter castration resistance.
Competing Interest Statement
A.M.C. is a co-founder of and serves as a Scientific Advisory Board member for LynxDx, Esanik Therapeutics, Medsyn, and Flamingo Therapeutics. A.M.C. is a scientific advisor or consultant for EdenRoc, Aurigene Oncology, and Tempus. No competing interests were declared from the remaining authors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer