Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The conversion of rapeseed straw into biochar not only effectively mitigates pollution from traditional straw burning but also aligns with China's sustainable agricultural development goals. A significant quantity of rapeseed stalks is frequently burned in fields, leading to severe air pollution characterized by black smoke and residue, resulting in a substantial waste of straw resources. To address this issue, rapeseed straw form Nanchi Village, Puzhen Town, Hanzhong City, Shaanxi Province, China was utilized as a precursor and KOH was employed as an activator to produce porous activated carbon by pyrolysis. Scanning electron microscopy (SEM), elemental analyzer, infrared spectroscopy, specific surface area analysis, and other instruments were employed to characterize the porous activated carbon produced under various temperature gradients and activator concentrations. The microelement composition, structure, specific surface area, and pore size of biochar produced under varying conditions were analyzed to determine the optimal preparation parameters. Furthermore, the adsorption efficiency for tetracycline in wastewater was evaluated using a three-factor, three-level orthogonal experimental design. The results showed that the interior of the activated carbon was porous, while the exterior contained oxygenated functional groups that facilitated the adsorption of nitrogen, phosphorus, and other elements. The optimal carbonization temperature and KOH concentration for activated carbon were determined to be 400°C and 0.5, respectively. The optimal adsorption conditions were identified as pH value of 7, an initial tetracycline concentration of 30 mg/L, a biochar dosage of 0.2 g, an adsorption time of 60 min, and a removal rate of 98.53%. The factors influencing the adsorption of tetracycline onto rapeseed straw biochar were ranked as initial tetracycline concentration>adsorption reaction time>biochar dasage. The findings will provide valuable references for research on biochar performance and the treatment of tetracycline contamination in water.

Details

Title
Preparation and properties of rapeseed straw based porous carbon materials
Author
Yan, Sha 1 ; Hu, Siyu 2 ; Yang, Qinyu; Guo, Ting; Zhao, Xinxin; Wang, Meng; Zhao, Zuoping

 chool of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China 
 State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Hanzhong 723001, Shaanxi, China) 
Pages
120-127
Publication year
2024
Publication date
Oct 2024
Publisher
International Journal of Agricultural and Biological Engineering (IJABE)
ISSN
19346344
e-ISSN
19346352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3150859803
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.