Full text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Golden Girl dolomite quarry was selected by the authors to develop predictive artificial neural network (ANN) models and software for optimization of blast fragment size distribution. Blast images from the quarry were analysed using WipFrag©. Seven controllable and two uncontrollable blast parameters, and WipFrag© image analysis results for fifty blasts were used to train ANN models. The reliability of the established models was tested, and the Bayesian regularization algorithm with the architecture of 9-8-3 was found to be superlative. The superlative model was compared with the modified Kuz-Ram model and found to be accurate. The optimum ANN models were translated into mathematical formulas and used to develop user-friendly software called BlastFrag optimizer. The software was validated with R2 greater than 80% for all models and was found suitable for predicting blast fragment size distribution. The optimized result revealed that percentages for oversize and mean-size fragments were reduced from 68.4% and 418 mm to 27.83% and 101.6 mm, respectively, and undersize fragments increased from 50% to 72.17%.

Alternate abstract:

V članku je predstavljen razvoj napovednega modela z uporabo umetne nevronske mreže ANN (ang. Artificial Neural Network) in programske opreme za optimizacijo porazdelitve velikosti fragmentacije miniranja na primeru kamnoloma dolomita. Slike iz miniranja v kamnolomu so bile analizirane z uporabo programske opreme WipFrag©. Za usposabljanje modela ANN je bilo uporabljenih sedem nadzorovanih in dva nenadzorovana parametra miniranja ter slikovna analiza WipFrag© za 50 odstrelov. Preizkušena je bila zanesljivost modelov. Izkazalo se je, da je bajezijski algoritem z arhitekturo 9-8-3 superlativen. Superlativni model je bil primerjan z modificiranim modelom Kuz-Ram, ki je bil natančen. Optimalni modeli ANN so bili prevedeni v matematične formule in uporabljeni za razvoj uporabniku prijazne programske opreme, imenovane BlastFrag optimizer. Razvita programska oprema je bila potrjena z R2 večjim od 80 % za vse modele. Ugotovljeno je bilo, da je primerna za napovedovanje porazdelitve velikosti fragmentacije miniranja. Optimizirani rezultat je pokazal, da se je odstotek s preveliko in povprečno velikostjo delcev zmanjšal iz 68,4 % oziroma 418 mm na 27,83 % oziroma 101,6 mm ter odstotek s premajhno velikostjo delcev zvišal s 50 % na 72,17 %.

Details

Title
Improvement of Blast-induced Fragmentation Using Artificial Neural Network and BlastFrag© Optimizer Software
Author
Blessing Olamide Taiwo 1 ; Adebayo, Babatunde 1 

 Department of Mining Engineering, Federal University of Technology, Akure, Nigeria 
Pages
47-59
Publication year
2022
Publication date
2022
Publisher
De Gruyter Poland
e-ISSN
18547400
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3152193778
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.