Full Text

Turn on search term navigation

© 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI’s velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.

Details

Title
Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data
Author
Huang, Zhaoyang; Guo, Xinyang; Qin, Jie; Gao, Lin; Ju, Fen; Zhao, Chenguang; Yu, Liang
Pages
1-16
Section
Research
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
17417007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3152679097
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.