Abstract
Background
The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.
Results
A total of 1,995 detoxification-related genes, including cytochrome P450 monooxygenases (CYPs), carboxylesterases (COEs), glutathione S-transferases (GSTs), UDP-glucuronosyltransferases (UGTs), and ATP-binding cassette transporters (ABCs), were identified across the genus Spodoptera, including S. littoralis, S. litura, S. picta, S. exigua, and both FAW strains. A higher abundance of phase I detoxification enzymes (CYPs and COEs) and GSTs was observed in Spodoptera species, while FAW strains exhibited fewer detoxification genes, with notable differences in copy numbers between the C and R strains. Analyses at the subfamily level revealed significant variation in gene distribution and expression, particularly within phase I and II detoxification enzymes. Expansions in CYP6AE were detected in the C strain, while contractions in GST-ε, CYP9A, CYP4M, UGT33B, and UGT33F occurred in both strains. In contrast, no substantial variation was observed in phase III ABC enzymes. Functional predictions and protein interaction networks suggest a broader expansion of metabolism-related genes in the R strain compared to the C strain.
Conclusions
These findings emphasize the pivotal role of phase I and II detoxification enzymes in host adaptation, providing molecular insights into FAW’s capacity for host range expansion, which are crucial for devising targeted and sustainable pest management strategies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer