Content area

Abstract

Traffic flow prediction, as a key link in the intelligent transportation system, assumes the important role of efficiently guiding the traffic flow, evacuating, congestion, reducing traffic accidents, and so on. However, due to the complex spatial and temporal correlation of traffic flow data, it faces the problem of inaccurate short-term prediction. In this paper, we adopt retentive network (RETNET) as the infrastructure of large-scale language model, which is similar to the Transformer model, but combines the recursive advantage of RNN to realize the efficient operation of parallelism and recursion. The RETNET model also handles the long sequences of information by stacking the same modules, but the difference is that it introduces multi-scale retention module (MSR) instead of the multi-head attention mechanism in the Transformer model, and adopts the chunked recursive approach to reduce the inference cost and improve the decoding throughput. Transformer model, and adopts chunked recursive parallel processing to reduce the inference cost and improve the decoding throughput. It is then combined with a Chebyshev graph convolutional neural network to utilize the spatial correlation of graph nodes to aggregate and update the features of road intersection nodes. The temporal and spatial information of traffic flow data is fully utilized by the combined spatial and temporal feature extraction, which improves the accuracy and robustness of traffic flow prediction.

Details

10000008
Title
Traffic flow prediction based on the RETGCN model
Volume
107
Issue
1
Pages
49
Publication year
2025
Publication date
Jan 2025
Publisher
Springer Nature B.V.
Place of publication
Wien
Country of publication
Netherlands
ISSN
0010485X
e-ISSN
14365057
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-01-08
Milestone dates
2024-12-19 (Registration); 2024-02-28 (Received); 2024-12-19 (Accepted)
Publication history
 
 
   First posting date
08 Jan 2025
ProQuest document ID
3152788353
Document URL
https://www.proquest.com/scholarly-journals/traffic-flow-prediction-based-on-retgcn-model/docview/3152788353/se-2?accountid=208611
Copyright
Copyright Springer Nature B.V. Jan 2025
Last updated
2025-02-07
Database
ProQuest One Academic