Content area

Abstract

Computational models of neural processing in the auditory cortex usually ignore that neurons have an internal memory: they characterize their responses from simple convolutions with a finite temporal window of arbitrary duration. To circumvent this limitation, we propose here a new, simple and fully recurrent neural network (RNN) architecture incorporating cutting-edge computational blocks from the deep learning community and constituting the first attempt to model auditory responses with deep RNNs. We evaluated the ability of this approach to fit neural responses from 8 publicly available datasets, spanning 3 animal species and 6 auditory brain areas, representing the largest compilation of this kind. Our recurrent models significantly outperform previous methods and a new Transformer-based architecture of our design on this task, suggesting that temporal recurrence is the key to explain auditory responses. Finally, we developed a novel interpretation technique to reverse-engineer any pretrained model, regardless of their stateful or stateless nature. Largely inspired by works from explainable artificial intelligence (xAI), our method suggests that auditory neurons have much longer memory (several seconds) than indicated by current STRF techniques. Together, these results highly motivate the use of deep RNNs within computational models of sensory neurons, as protean building blocks capable of assuming any function.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

* update reports of performance on AA1 datasets after a correction in the data preprocessing methods.

* https://github.com/urancon/deepSTRF

Details

1009240
Title
Temporal recurrence as a general mechanism to explain neural responses in the auditory system
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Feb 4, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Milestone dates
2025-01-09 (Version 1)
ProQuest document ID
3153304477
Document URL
https://www.proquest.com/working-papers/temporal-recurrence-as-general-mechanism-explain/docview/3153304477/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-02-05
Database
ProQuest One Academic