Full Text

Turn on search term navigation

© 2025 Hamza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors. Therefore, early detection is crucial as it enhances treatment outcomes and improves success rates. However, accurate diagnosis is challenging due to the inherent similarities between normal and cancerous cells. Although various techniques are available for blood cancer identification, high-frequency imaging techniques have recently shown promise, particularly for real-time monitoring. Notably, terahertz (THz) frequencies offer unique advantages for biomedical applications. This research proposes an innovative terahertz metamaterial-based biosensor for high-efficacy blood cancer detection. The proposed structure is ultra-compact and operates across five bands within the range of 0.6 to 1.2 THz. It is constructed using a polyethylene terephthalate (PET) dielectric layer and two aluminum (Al) layers, with the top layer serving as a base for the THz-range resonator. Careful design, architectural arrangement, and optimization of the geometry parameters allow for achieving nearly perfect absorption rates (>95%) across all operating bands. The properties of the proposed sensor are extensively evaluated through full-wave electromagnetic (EM) analysis, which includes assessing the refractive index and the distribution of the electric field at individual working frequencies. The suitability for blood cancer diagnosis has been validated by integrating the sensor into a microwave imaging (MWI) system and conducting comprehensive simulation studies. These studies underscore the device’s capability to detect abnormalities, particularly in distinguishing between healthy and cancerous cells. Benchmarking against state-of-the-art biosensors in recent literature indicates that the proposed sensor is highly competitive in terms of major performance indicators while maintaining a compact size.

Details

Title
Ultra-compact quintuple-band terahertz metamaterial biosensor for enhanced blood cancer diagnostics
Author
Hamza, Musa N  VIAFID ORCID Logo  ; Islam, Mohammad Tariqul; Lavadiya, Sunil; Din, Iftikhar ud; Sanches, Bruno  VIAFID ORCID Logo  ; Koziel, Slawomir; Naqvi, Syeda Iffat; Farmani, Ali; Islam, Shabiul
First page
e0313874
Section
Research Article
Publication year
2025
Publication date
Jan 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153514186
Copyright
© 2025 Hamza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.