Content area

Abstract

As a critical component of lifeline engineering, bridges play a vital role in post-earthquake rescue and disaster relief efforts. The rapid repair of earthquake-damaged piers is essential to ensure the uninterrupted functionality of lifeline systems. This paper presents a novel method for the rapid repair of earthquake-damaged pier columns using steel sleeves, based on a multi-level fortification approach, integrating numerical simulation, structural design, and experimental research. In alignment with the multi-level fortification requirements, the structural form of the outer steel sleeves was designed, key influencing factors were analyzed, and a design scheme for the outer steel sleeve was proposed. Furthermore, a quasi-static test was conducted to evaluate the seismic performance of the pier columns before and after repair. The results indicate that the maximum horizontal load the pier can withstand after repair is approximately 40% higher than that before the damage. When the pier’s bearing capacity reaches its maximum value, the horizontal displacement increases from 29.15 mm to 95.65 mm, indicating a significant improvement in the seismic performance of the repaired pier. Failure initiates with the buckling of the brace, followed by the buckling of the steel sleeves, demonstrating a multi-stage failure mode. This mode satisfies the requirements of multi-level fortification, with enhanced ductility achieved while maintaining the pier column’s bearing capacity, thereby enhancing the protection of the foundation.

Details

1009240
Title
Study on Rapid Repair Method of Earthquake Damaged Pier Column Based on Multi-Level Fortification
Publication title
Buildings; Basel
Volume
15
Issue
1
First page
81
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-12-29
Milestone dates
2024-12-06 (Received); 2024-12-25 (Accepted)
Publication history
 
 
   First posting date
29 Dec 2024
ProQuest document ID
3153544793
Document URL
https://www.proquest.com/scholarly-journals/study-on-rapid-repair-method-earthquake-damaged/docview/3153544793/se-2?accountid=208611
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-10
Database
ProQuest One Academic