Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas. The results showed that CP treatment significantly improves drying efficiency by modifying the pea epidermis microstructure, reducing drying time by up to 18.18%. The moisture effective diffusivity coefficients (Deff) for untreated and CP-pretreated green peas were calculated to range from 5.9629 to 9.9172 × 10−10 m2·s−1, with CP pretreatment increasing Deff by up to 66.31% compared to the untreated group. Optimal CP parameters (90 s, 750 Hz frequency, 70% duty cycle) were found to improve the rehydration ratio, preserve color, and increase total phenolic content (TPC) by 24.06%, while enhancing antioxidant activity by 29.64%. Microstructural changes, including pore formation and increased surface roughness, as observed through scanning electron microscopy (SEM), partially explain the enhanced moisture diffusion, improved rehydration, and alterations in nutrient content. These findings underscore the potential of CP technology as a non-thermal, eco-friendly pretreatment for drying agricultural products, with broad applications in food preservation and quality enhancement.

Details

Title
Cold Plasma as a Novel Pretreatment to Improve the Drying Kinetics and Quality of Green Peas
Author
Jun-Wen, Bai  VIAFID ORCID Logo  ; Dan-Dan, Li; Abulaiti, Reziwanguli; Wang, Manqian; Wu, Xiaozhi; Feng, Zhenwei; Zhu, Yutong; Cai, Jianrong
First page
84
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153582730
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.