Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Extraction of dense 3D geographic information from ultra-high-resolution unmanned aerial vehicle (UAV) imagery unlocks a great number of mapping and monitoring applications. This is facilitated by a step called dense image matching, which tries to find pixels corresponding to the same object within overlapping images captured by the UAV from different locations. Recent developments in deep learning utilize deep convolutional networks to perform this dense pixel correspondence task. A common theme in these developments is to train the network in a supervised setting using available dense 3D reference datasets. However, in this work we propose a novel unsupervised dense point cloud extraction routine for UAV imagery, called UnDER. We propose a novel disparity-shifting procedure to enable the use of a stereo matching network pretrained on an entirely different typology of image data in the disparity-estimation step of UnDER. Unlike previously proposed disparity-shifting techniques for forming cost volumes, the goal of our procedure was to address the domain shift between the images that the network was pretrained on and the UAV images, by using prior information from the UAV image acquisition. We also developed a procedure for occlusion masking based on disparity consistency checking that uses the disparity image space rather than the object space proposed in a standard 3D reconstruction routine for UAV data. Our benchmarking results demonstrated significant improvements in quantitative performance, reducing the mean cloud-to-cloud distance by approximately 1.8 times the ground sampling distance (GSD) compared to other methods.

Details

Title
UnDER: Unsupervised Dense Point Cloud Extraction Routine for UAV Imagery Using Deep Learning
Author
Bergado, John Ray  VIAFID ORCID Logo  ; Nex, Francesco  VIAFID ORCID Logo 
First page
24
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3153688567
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.